

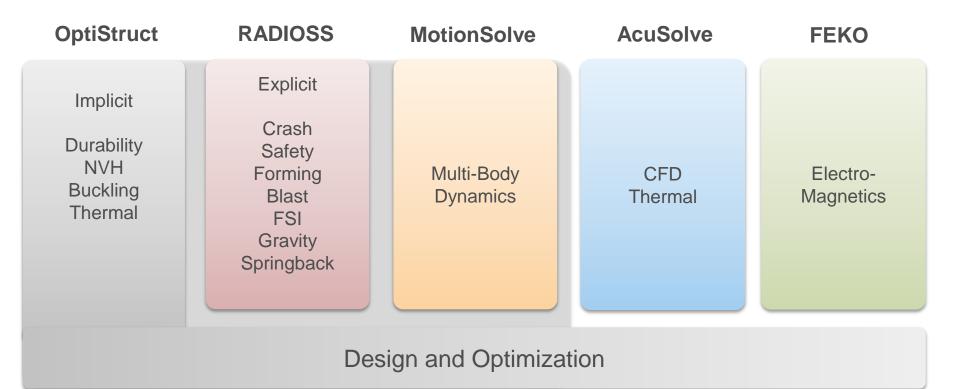
Innovation Intelligence®

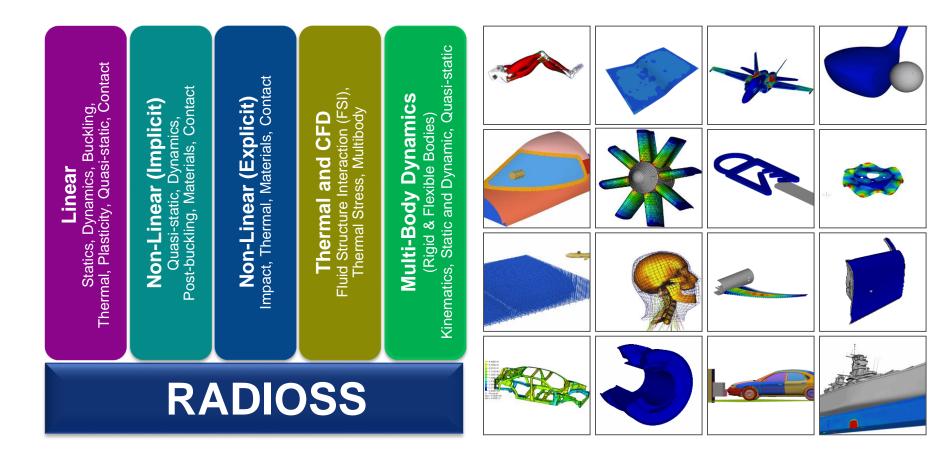
Altair Radioss Explicit Solver

Dmitry Fokin Senior Application Specialist

March 2016

fokin@altair.de





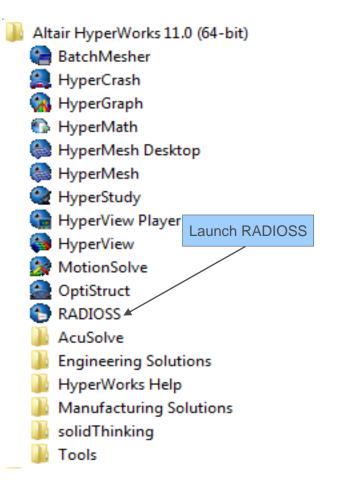
- 1. What is Radioss Explicit Solver
- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate

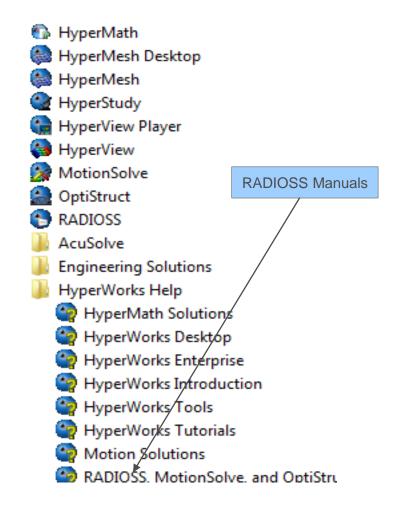
Altair Solvers

🛆 Altair

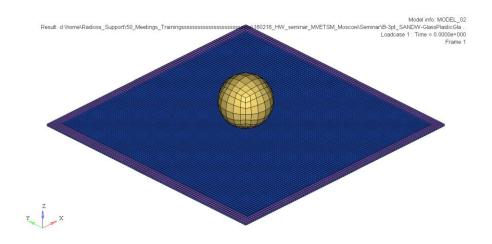
RADIOSS is a Complete Finite Element Solution in HW

RADIOSS – used in more than 900 companies –

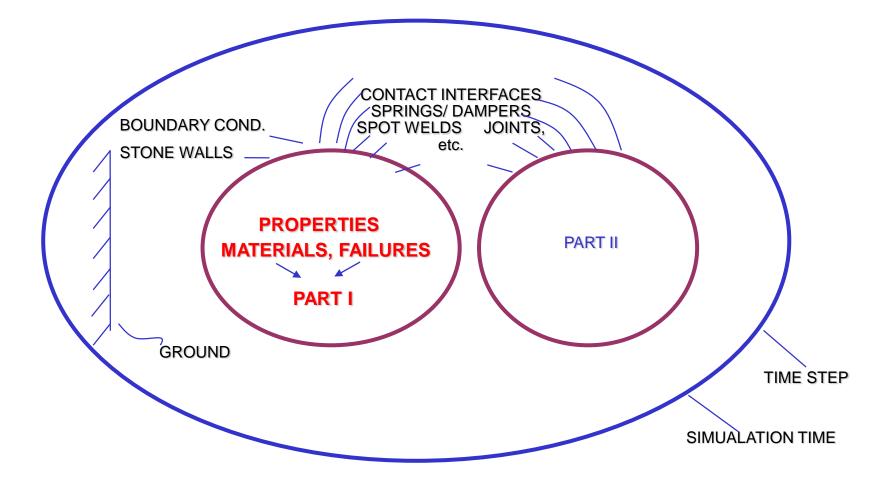




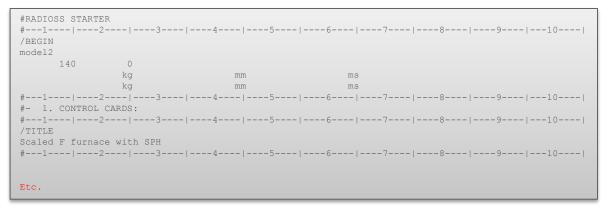
RADIOSS is a Complete Finite Element Solution in HW

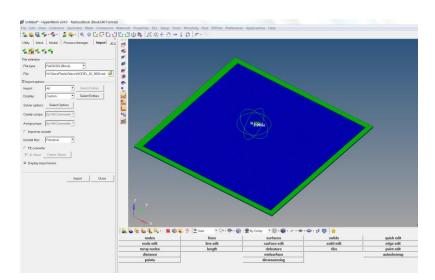

Access RADIOSS from HyperWorks Suite:

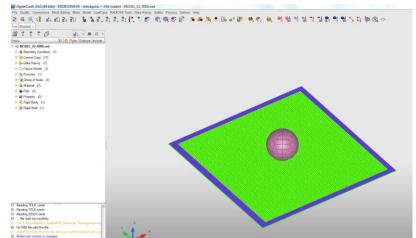
An example of problem that can be solved in Radioss


- Sphere drop (41kg) on a brittle plate (glass)
- Initial velocity of the sphere 5m/s
- The plate is composite glass and fixed on the edges
- Units: T, mm, s
- Elasto- plastic material
- Johnson Cook Failure criterion
- Crack propagation
- This problem is considered in details on seminar (data available if you need)

Structure of Radioss model


Model set up is similar to other explicit solvers


How to create Radioss model


Type ASCII file (for real experts ©)

Use Hypermesh

Use Hypercrash

1. What is Radioss Explicit Solver

- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate

Material library in Radioss

🛆 Altair

Metallic alloys

- Law 1 : elastic material
- Law 2 : elasto-plastic material
- Law 27 : elasto-plastic brittle material
- Law 36 : tabulated elasto-plastic material
- Law 60: ~ 36 + quadratic strain rate interpolation
- Law 66: Visco Elastic Plastic Piecewise Linear Material

Austenitic & stainless steels

- Law 63: Hansel material
- Law 64: Ugine & ALZ material

crushable foams (Honeycomb)

- Law 28: Honeycomb
- Law 50: Crushable foam
- Law 68: Cosserat medium

Foams

- Law 33: Closed Cell visco-elasto-plastic
- Law 35: Generalized Kelvin-Voigt open/closed cells
- Law 38: Tabulated visco-elastic material
- Law 70: Tabulated hyper visco elastic material

+ User defined material subroutines

Rubber

Law 42: Ogden-Mooney-Rivlin

Law 62: Hyper Visco Elastic material

Plastic

- Law 36: tabulated elasto-plastic material
- Law 65: Elastomer material
- Law 66: Visco Elastic Plastic Piecewise Linear Material
 - Law 76: SAMP

Glass

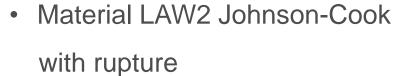
- Law 27:elasto-plastic brittle material
- Law 36: tabulated elasto-plastic material

Composite

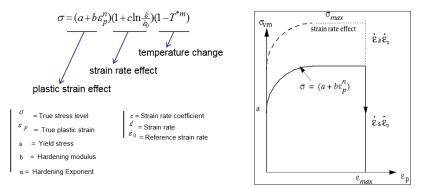
- Law 36: tabulated elasto-plastic material
- Law 15: Tsai-Wu plasticity
 - + Chang & Chang failure
 - Law 25: Tsai-Wu plasticity model

Fabric

- Law 19: linear elastic orthotropic material
- Law 58: nonlinear elastic material


Special

Law 5: Jones Wilkins Lee Material (Explosives e.g. TNT)


Material Law 2: simple elasto- plastic material

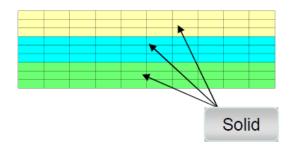
- Material LAW2 (Johnson-Cook)
 - Definition
 - The material law is defined using Johnson Cook formulation :

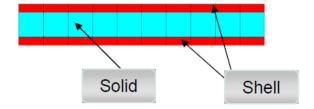
- Example of Radioss card
 - Mild steel material

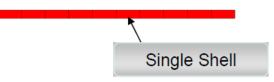
#2	1 3	4	-5	6	7 8	9 10
/MAT/PLAS JOHNS/1						
Mate	rial A					
#		Ref. dens.				
	7.8E-9	0				
#	E	Nu				
	210000	.3				
#	a	b		n	Eps max	sigmax
	400	550		.5	4	0
#	С	EPSO	Icc	Fsmooth	F CUT	
	0	0	0	0	_ ₀	
#	m	T melt		rhoCp	Ті	
	0	- 0		0		
#2	1 2 3	4	-5	6	7 8	9 10

Orthotropic non-linear laminated composite material

Each ply with at least one solid

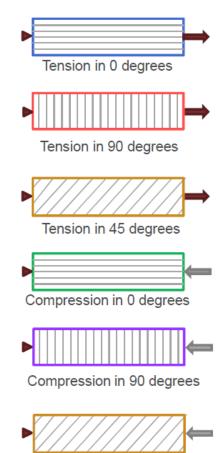

Large model, long CPU time Advance Mass Scaling to increase simulation speed High accuracy


Mixed approach (middle layer thick)

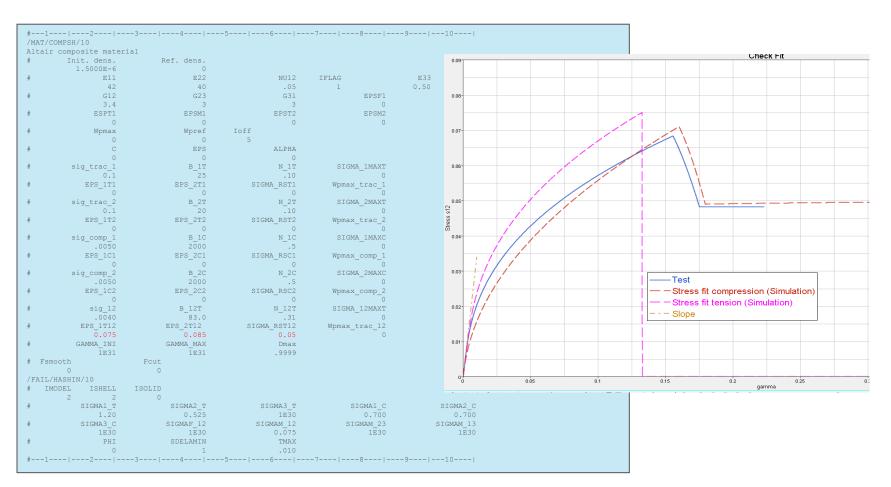

Shells for top and bottom ply Solid, thick shell or cohesive for middle layer Several solid layers to provide rotation Medium size model, significant CPU time

Shell & Thick shell approaches

Reduced integration in normal direction Sandwich shell approach One shell element through the thickness Multiple plies, with different materials "Standard size " model



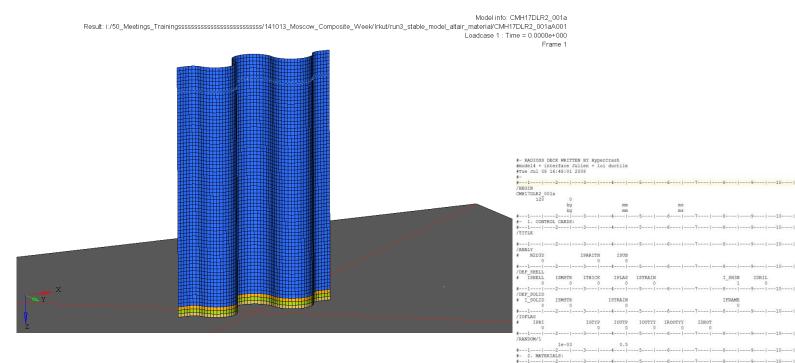
Orthotropic non-linear composite material



	'COMPSH/10 .r composite material					
AItai	r composite material RHO I					
*	1.5E-9	0				
(#	E11	E22		NU12	Iform	E33
1	127205	7004		.05	1	200
±	G12	G23		G31	EPS f1	EPS fi
(* (*	15094	15094		15094		
Ŧ	EPS t1	EPS m1		EPS t2	EPS m2	d ten
		- 0		0		-
#	Wpmax	Wpref	Ioff	IFLAWP	ratio	
	0	0	6	0	1.0	
#	С	EPS rate 0		alpha		ICC_globa
	0	0		0		
(#	sig_1yt	b_1t		n_1t	sig_1maxt	c_1
	1350	0		0	0	1
#	EPS_1t1	EPS_2t1	SI	GMA_rst1	Wpmax_t1	
	0	0		0	0	
#	sig_2yt	b_2t		n_2t	sig_2maxt	c_2
	66.38	0		0	0	1
#	EPS_1t2	EPS_2t2		sig_rst2	Wpmax_t2	
	0	0		0	0	
# # #	sig_1yc 650	b_1c		n_1c	sig_1maxc 0	c_1
		.517338		.718969		
#	EPS_1c1	EPS_2c1		sig_rsc1 0	Wpmax_c1 0	
	sig 2yc	b 2c		n 2c	sig 2maxc	c 2
	125	.527013		.324912	0	
#	EPS 1c2	EPS 2c2		sig rsc2	Wpmax c2	
	0	0		0	0	
#	sig 12yt	b 12t		n 12t	sig 12maxt	c 12
	0.004	67.0		0.29	 0	
#	EPS 1t12	EPS 2t12	s	ig rst12	Wpmax t12	
	0	0		- <u> </u>		
#	GAMMA_ini	GAMMA_max		d_max		
	1E31	1E31		.9999		
# Fs	mooth	Fcut				

Example of validation for 45 deg compression

- Strains to damage and rest stress in direction 12 are used to reproduce the test behavior
- Note that damage strains are half of the damage gamma values



E33

EPS_f2

d_tens

Sinus beam crash (generic composite material)

/MAT/COMPSH/1

RHO_I # RHO_I 1.5E-6 # Ell

42

612

3.4

ESP_t1 0 Wpmax E22

40 G23

EPS_m1

Wpref

NU12

.05 G31

EPS_t2

Ioff IFLAWP

Iform

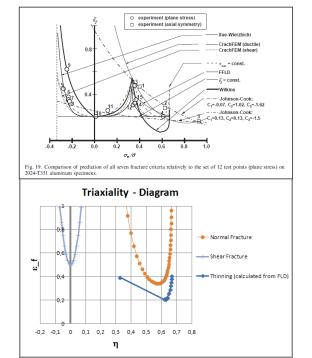
EPS_f1

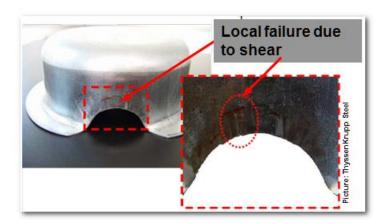
EPS_m2

- Check model built up
- Definition of materials, properties
- Run settings
- Post processing

RADIOSS – Rupture Criteria

Failure Model Description

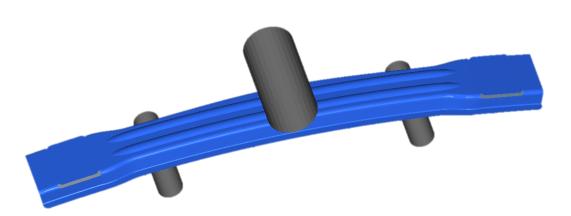

Failure Model Keyword	Туре	Description	
CHANG	Chang-Chang model	Failure criteria for composites	
CONNECT	Failure	Normal and Tangential failure model	
ENERGY	Energy isotrop	Specific energy	


MATERIAL MODELS & RUPTURE CRITERIA LIBRARIES => MORE THAN 300 COMBINATIONS

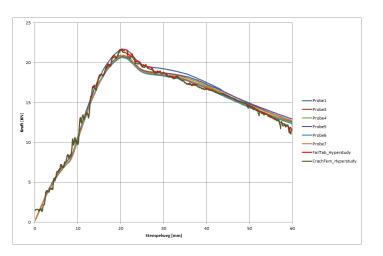
TBUTCHER	Tuler-Butcher model	Failure due to fatigue
TENSSTRAIN	Traction	Strain failure
USERi	User failure model	
WIERZBICKI	Ductile material	Bao-Xue-Wierzbicki model
WILKINS	Ductile failure model	Wilkins model
XFEM_FLD	Forming limit diagram	Fld
XFEM_JOHNS	Ductile failure model	Johnson-Cook
XFEM_TBUTC	Ductile (brittle) failure model	Modified Tuler-Butcher model
EMC	Ductile material	Extended Mohr-Coulomb MIT

Tabulated failure criterion for elastoplastic materials

- Failure Curve (eps_f vs. triaxiality) test input is a user function
- Strain Rate Dependency Different curves for different strain rates
- Element Length Dependency
- Load path is taken into account by damage accumulation
- Bending Behavior: Percentage of Thickness to fail before deleting shells



Tabulated failure criterion for elastoplastic materials



(KIRCHHOFF AUTOMOTIVE

RADIOSS simulation

Simple Chang-Chang failure criteria for composites

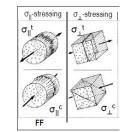
- With fiber direction 1:
 - Tensile fiber mode:

$$\left(\frac{\sigma_{11}}{S_1}\right)^2 + \beta \left(\frac{\sigma_{12}}{S_{12}}\right)^2 \ge 1 \qquad \sigma_{11} > 0$$

0 deg Tension
45 deg Tension

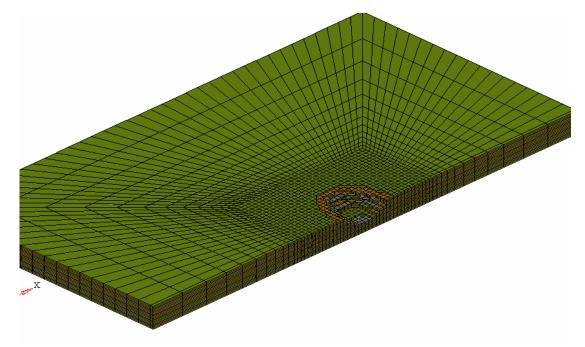
• Compressive fiber mode:

• Tensile matrix mode


For matrix cracking:

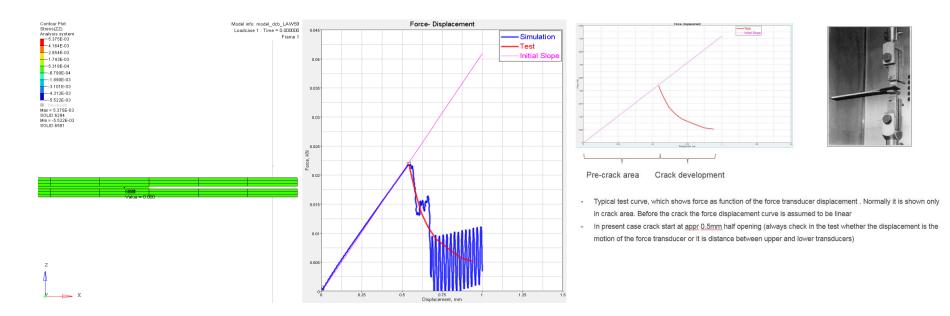
- $\left(\frac{\sigma_{22}}{S_2}\right)^2 + \beta \left(\frac{\sigma_{12}}{S_{12}}\right)^2 > 1 \qquad \sigma_{22} > 0$ 90 deg Tension
 45 deg Tension
- Compressive matrix mode

$$\left(\frac{\sigma_{11}}{C_1}\right)^2 > 1$$
 $\sigma_{11} < 0$
0 deg Compression

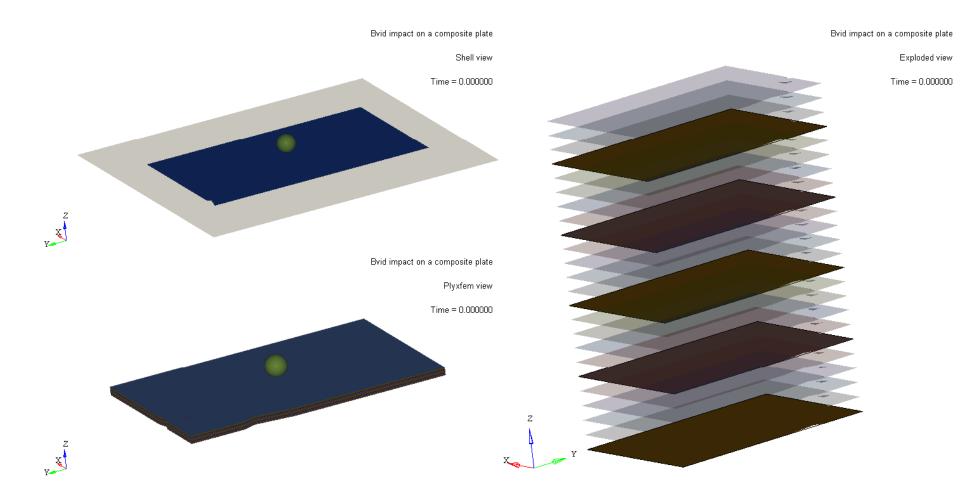

$$\left(\frac{\sigma_{22}}{2S_{12}}\right)^2 + \left[\left(\frac{C_2}{2S_{12}}\right)^2 - 1\right]\frac{\sigma_{22}}{C_2} + \left(\frac{\sigma_{12}}{S_{12}}\right)^2 > 1 \qquad \sigma_{22} < 0$$

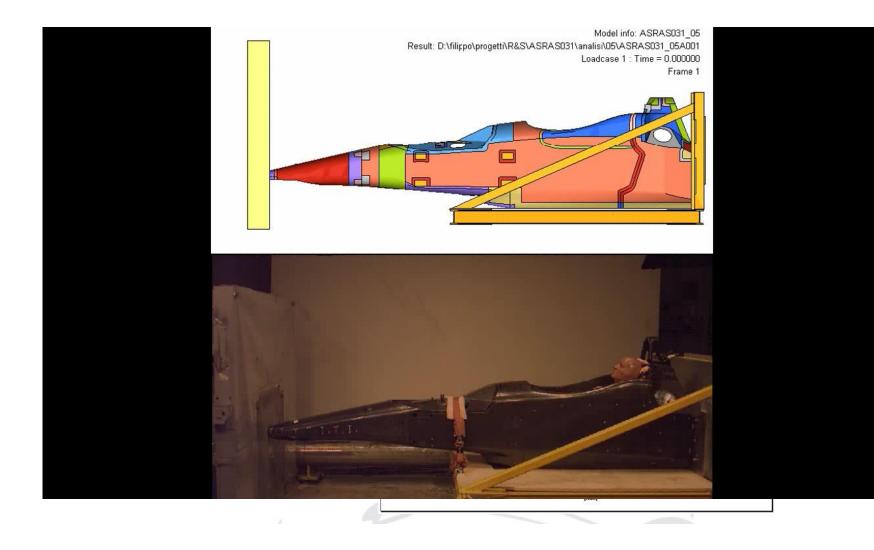
90 deg Compression 45 deg Compression

Failure criteria can be combined


- Possibility to apply several failure criteria for one material law :
 - Example :
 - Hashin for fiber
 - Puck for Matrix
 - Ladeveze for delamination

Connect material LAW59 for adhesive layers

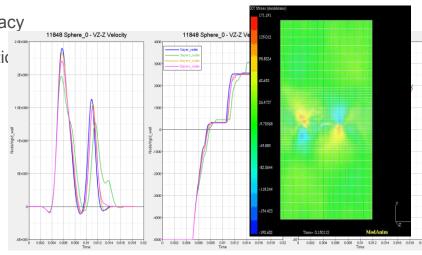


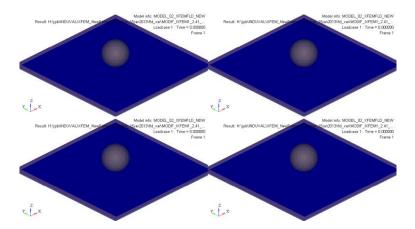

- For adhesive layers, spotwelds, any other type connections
- Element height does no affect time step. Can be 0!
- Example of DCB test with LAW59

Ply-XFEM Approach for delamination

RADIOSS - DALLARA Race cars design Composite structures

RADIOSS - X-FEM


🛆 Altair


Goals

- Splitting elements when failure occurs => ↑ accuracy
- o Crack propagation independent of the mesh direction
- ↑ mesh size independency
- o Allow relatively coarse mesh

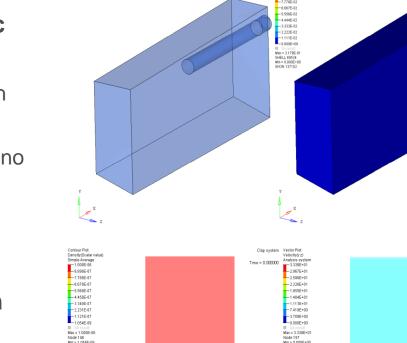
Capabilities

- Compatible properties
 - /PROP/SHELL isotropic mono-layer
 - /PROP/SH_SANDW isotropic/orthotropic multi-layer
- Compatible failure models
 - /FAIL/JOHNSON
 - /FAIL/TBUTCHER
 - /FAIL/TAB1
 - /FAIL/FLD
 - FAIL/TAB with Lode angle
 - /FAIL/SNCONNECT
 - /FAIL/NXT
- o Crack visualization per layer
- Simple activation through the flag lxfem = 1

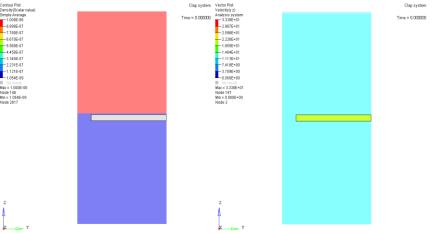
RADIOSS - X-FEM update

Latest enhancements

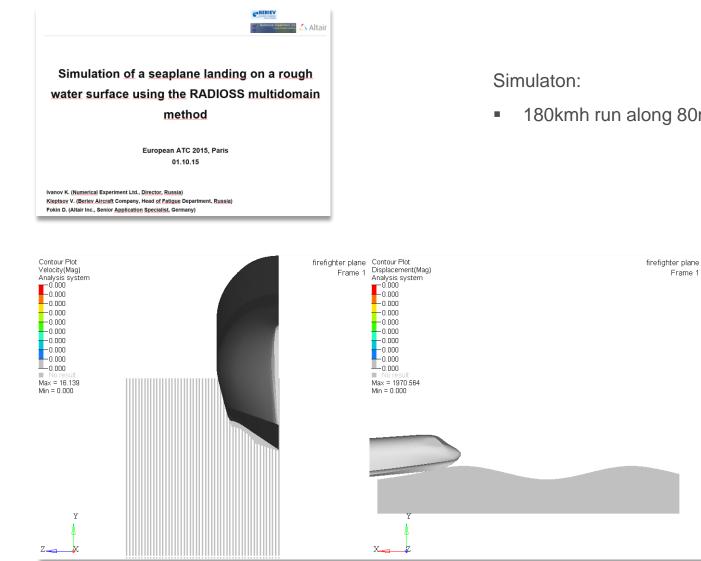
- Addition of an optional "advancement parameter" [0, 1] in all X-FEM compatible failure models
 - Decoupling of the crack initiation and the crack advancement criteria
 - Enabling the control of cracks number and crack propagation velocity
- SPMD & H-MPP compatibility and performance optimization
- Compatibility /MAT/HILL (LAW32) &/MAT/HILL_TAB (LAW43) with /FAIL/JOHNSON criterion



- 1. What is Radioss Explicit Solver
- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate


RADIOSS FSI: SPH and ALE

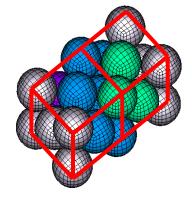
- Smooth Particle Hydrodynamic is used :
 - 1. the fluid fills only a small portion of the domain
 - 2. Air behavior can be neglected (no cavitation ...)

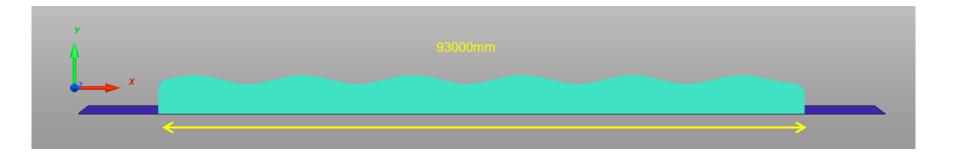


Result: E:/Beri

- Arbitrary Lagranginan Eulerian is recommended:
 - 1. the fluid fills most of the domain
 - 2. Air behavior cannot be neglected (no cavitation ...)
 - 3. Accurate fluid modeling (turbulence ...) required

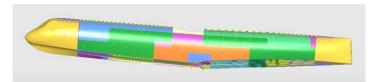
Landing run over a wavy water surface




🛆 Altair

180kmh run along 80m water basin

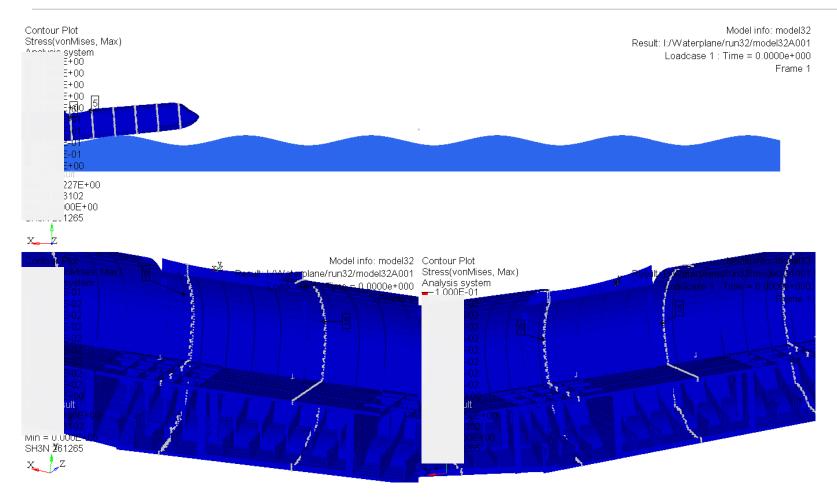
Smooth Particles Hydrodynamics for ditching problems


- Domain divided by a set of particles tied to their neighbors by internal forces
- Incompressible water material is used
- Appr 3.300.000 particles

SPH for Multidomain in Radioss

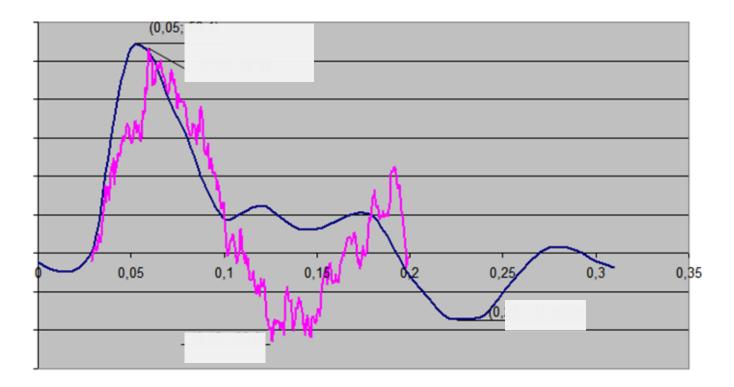
Structural domain:

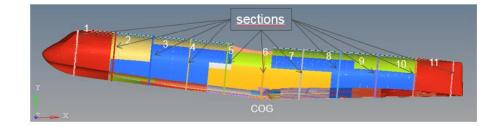
- deformable structure of aircraft
- 300.000 elements
- Maximal possible time step 0.25e-02ms



Water domain:

- SPH and void component to replicate fuselage
- type 7 contact between the void and SPH water
- Maximal time step 3.300.000 elements, maximal time step 0.17e-01ms

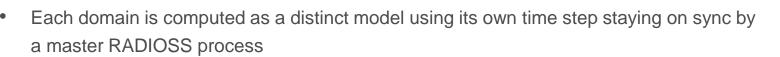

180kmh. Von Mises Stress distribution in structure

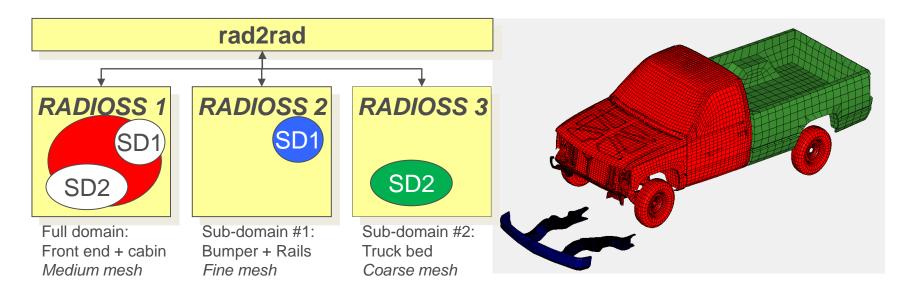

Due to multidomain approach simulation time reduced from 10 to 2 weeks

Comparison to measurements. Moments over one period of wave 🛆 Altair

Blue: landing test measurements

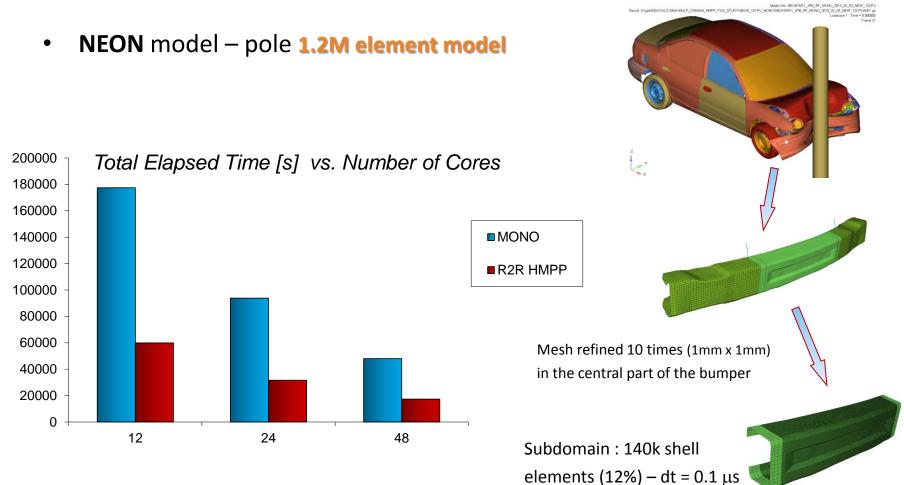
Lila: Radioss simulations





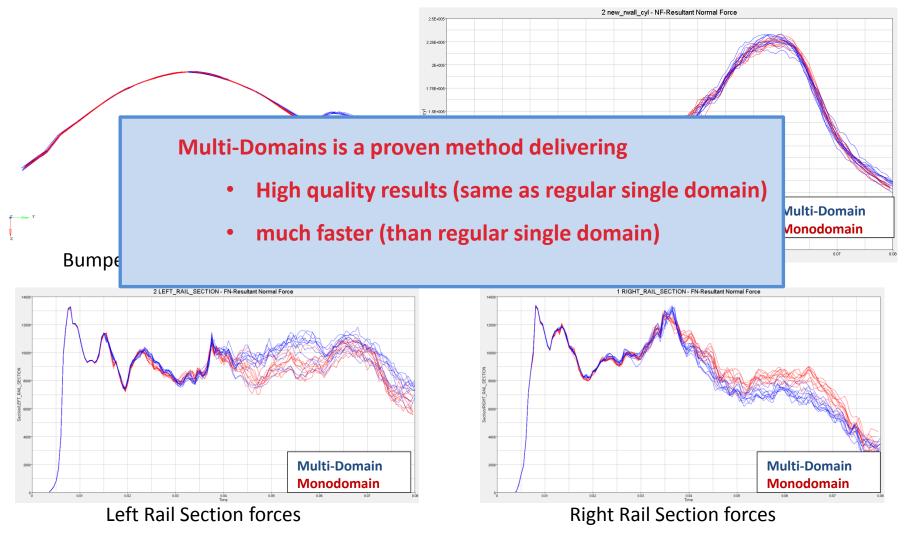
- 1. What is Radioss Explicit Solver
- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate

RADIOSS - Multi-Domain


- Force and momentum between domains are transferred by the master RADIOSS process insuring equilibrium and stability at sync times
- Only one domain is computed at a time

- No limitation in term on number of domains
- In case of two domains a single input is used and RADIOSS creates automatically the dedicated input decks

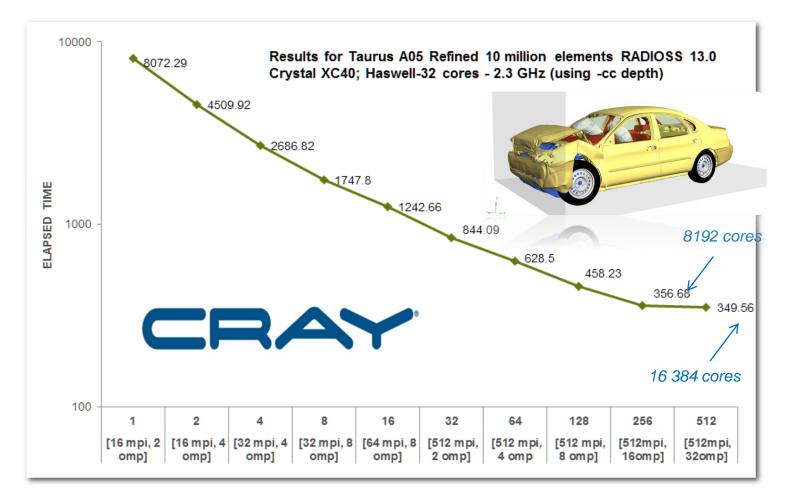
RADIOSS – Multi-Domain



Speed up ratio 2.7

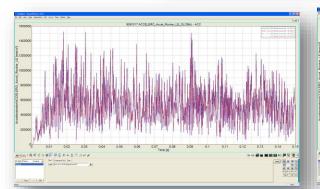
RADIOSS – Multi-Domain

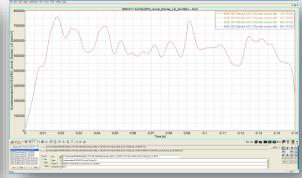
- Multi-Domain v. Monodomain Robustness Analysis
 - 1 μ m random noise by seed increment of 0.1 from 0.0 to 0.9

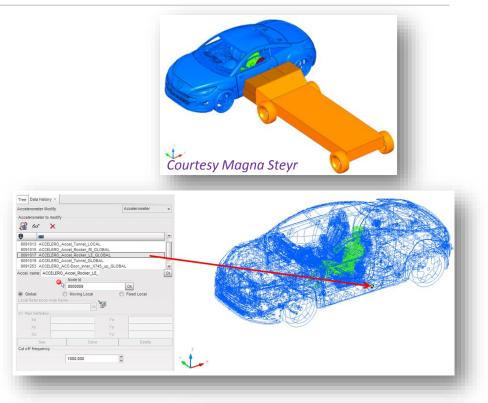


- 1. What is Radioss Explicit Solver
- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate

RADIOSS: Leading Scalability in crash

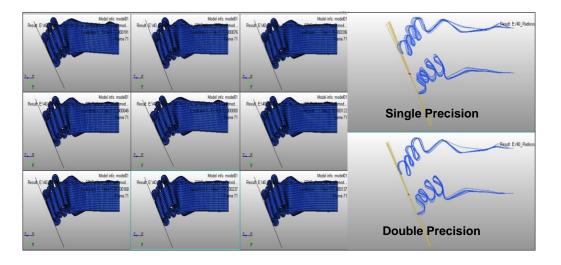

• Scalability 10 Million Elements RADIOSS V13.0

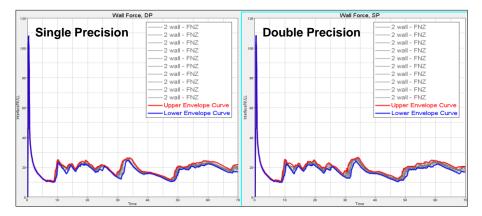



RADIOSS – Unique solution with Full Repeatability

- Full model with dummy and airbag
 1.5 M elts
- Runs on 16, 32, 48 & 64 cores
- Accelerometer No.:8091017 (Rocker Lower Left)
- Perfect Repeatability Independent of amount of cores

Courtesy Magna Steyr





RADIOSS - Robustness and Repeatability

Numerical scattering in RADIOSS is minimized

Single precision brings 40% speed up

(RADIOSS runs with 1 e-6 random noise applied to all nodes)

- 1. What is Radioss Explicit Solver
- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate

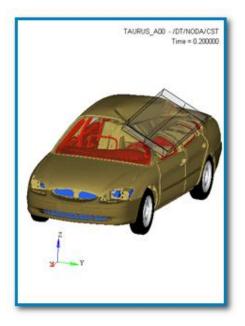
RADIOSS speed up solution Advanced Mass Scaling

- Classical methods for raising time step
 - Increase of mass & momentum => change the kinematic energy
 - All frequencies are affected
- AMS
 - Non diagonal mass matrix

 $M^* = M + \Lambda$

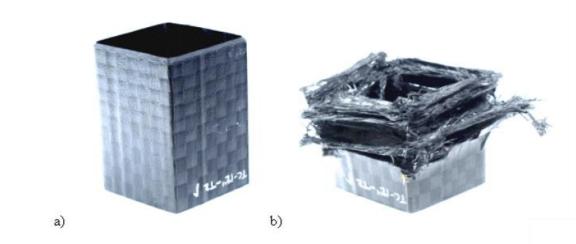
- Assembling elementary matrices
 - δ_{e} large enough to obtain the target time step
- Added mass = zero / No change in total mass, energy & momentum
- Low frequencies are almost not affected

 $\lambda = \frac{\delta_e}{12} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$

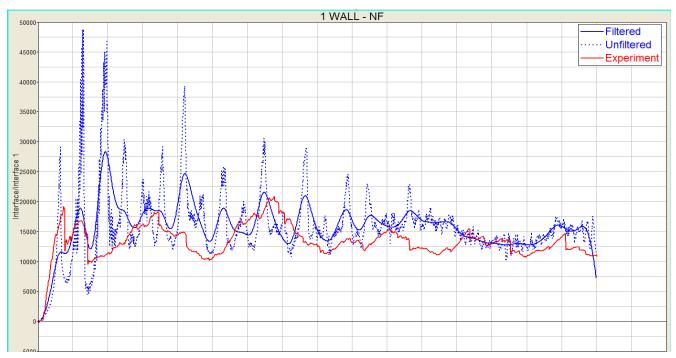

RADIOSS – Advanced Mass Scaling

AMS

- 1. Competitive for quasi static simulation versus implicit
- 2. Efficient for manufacturing (stamping, ...)
- 3. Allows to stay with a "standard" time step with a fine meshed model


	Mass Scaling	Advanced Mass Scaling
Target time step	0,5 μs	10 μs
Mean time step	0,5 μs	9,9 μs
Nb of cycles	403187	20146
Elapsed Time (16 cores)	19.6h	4.2h
Speed-up		4.64 x

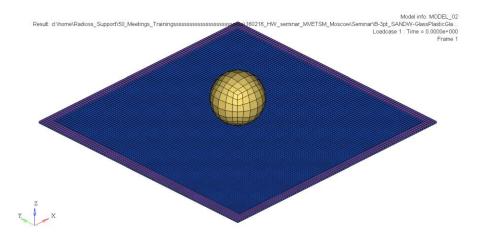
AMS example : quasi-static tube crush


- Tube : 8 plies carbon epoxy
- Height : 76 mm
- Side length : 63 mm
- 18545 elements (element size = 1mm)

No AMS (mass is added for cste dt): : 10 hours AMS, time step multiplied by 5 : 2 hours 40 minutes AMS, time step multiplied by 10 : 2 hours 25 minutes

- 1. What is Radioss Explicit Solver
- 2. Material Laws and Rupture Criteria
- 3. Fluid Structure interaction
- 4. Multi-Domain
- 5. Scalability / Repeatability
- 6. Advanced Mass Scaling
- 7. Example: drop test on a composite glass plate

Welcome to Radioss Seminar


The aim of this example is to simulate failure and crack propagation into glass composite structure

Discussed:

- Definition of elasto-plastic material for the plate
- Finite element properties of shell
- Rigid wall definition
- Boundary conditions
- Simulation set up
- Post processing of results

HW programs used:

- Hypercrash for model set up
- Radioss for simulation
- Hyperview for postprocessing of results

Innovation Intelligence®

Thank you for your attention

49