OptiStruct 14.0

Optimization-Driven Design

Drivers for OptiStruct 14.0

© 2016 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Over 70 New Features in OptiStruct 14.0

...to make your team more productive, effective and innovative

Focus for 14 – Better Designs and Better Processes

Release Highlights – New Solutions

- Analysis
 - Fast Contact Analysis
 - Coupled Transient Heat Transfer and Static Analysis
 - Rigid Bodies
- Optimization
 - Stress Response for Topology/Free-Size Optimization
 - Multi-Axial Fatigue Analysis and Optimization
 - New Optimization Responses
 - New Manufacturing Constraints
 - · Design and Optimization of Lattice Structures for Additive Manufacturing

Release Highlights – Solution Enhancements

- Nonlinear Analysis
 - Contact
 - Material
 - Elements and Loading

- NVH Analysis
 - BIOT Material
 - One-Step Transfer Path Analysis (TPA)
 - CMS with Preload

Release Highlights – Solution Enhancements

- Optimization
 - Large Shape Change Based Optimization
 - Topography Optimization for Laminate Composites
 - Composite Free Sizing with ESLM
 - Solid Topology in RADOPT
 - Multiple Slopes for Dang Van Factor of Safety (FoS)
 - Zero Crossing Response for Random Response
 Optimization
 - Topology Result Discreteness

Release Highlights – Performance

- NVH Analysis
 - Faster CMS SE Generation with AMSES
 - Improved Stability for FASTFR
 - Support for Larger Model Size in Modal Frequency Response Analysis

• Fast Contact Analysis

Release Highlights – Usability

- Nonlinear Analysis
 - Results Output
- NVH Analysis
 - Preloaded Modal FRA
 - Preloaded Direct/Modal Transient Analysis
- Optimization
 - DRESP2/3 Response Output in H3D
 - Turn Off Check for Negative and Large Compliance in Optimization
 - Free-Shape Optimization Results Output

Session	Results	
20	💊 📢 🖗 📚	
Model		*
Subcase	•	
Load Fa	ctor = 1.143301E-01	•
H Load Fa	stor = 1.143301E-01	
H Load Far	otor = 2.584927E-01	
Er Load Fa	ctor = 5.098762E-01	<u></u>
E Load Fa	otor = 6.193497E-01	
Load Fa	ptor = 7.835599E-01	•
🕀 📔 Lo	ad Cases	
🕀 🔞 No	ites (1)	
🕀 💽 Pla	ot Styles (3)	
🕀 🛅 Re	esults	
🕀 🧑 Se	ts (7)	
🕀 💦 Me	easures (2)	

© 2016 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

New Solutions

Fast Contact Analysis

- Much faster than nonlinear analysis with contact and as accurate
- Can be used in models with no friction and no material and geometric nonlinearity
- Linear analysis solution
- Supports MPC-based GAPs, CGAP/CGAPG and N2S contact definitions

1031779 DOFs 1681 Contact Elements 4 Cores, SMP

🛆 Altair

Contact Pressure

Coupled Transient Heat Transfer and Static Analysis

- Temperatures from a linear transient heat transfer analysis are used as thermal loading in a subsequent linear static analysis
- Better workflow to capture coupled thermo-mechanical behavior
- Temperature-dependent materials are supported

🔨 Alta

Rigid Bodies

- Define sets of grids, elements or surfaces as rigid bodies
- Rigid bodies can be added
- · Mass and inertia properties can be defined
- · Can be used to rigidly connect parts without defining any connectors

Stress Response for Topology/Free-Size Optimization

- Flexible definition of stress constraints
 - Subcase dependent
 - Material dependent
 - Regional/local
- · Detailed constraints at the topology/free sizing stage
- Not limited to Von Mises stress

Stress Response for Topology/Free-Size Optimization

Multi-Axial Fatigue Analysis and Optimization

- High-cycle (SN) and low-cycle fatigue (EN) methods are supported
- Critical plane approach to capture the physical nature of damage
 - Experimentally, cracks initiate and grow on critical planes
 - Stresses and strains on critical planes
 - Can be either max shear or max tensile stress
 planes

Multi-Axial Fatigue Analysis and Optimization

- Damage models
 - SN
 - Goodman (tensile crack)
 - Findley (shear crack)
 - EN
 - Smith-Watson-Topper (tensile crack)
 - Fatemi-Socie and Brown-Miller (shear crack)
- Smith-Watson-Topper mean stress correction can be used in optimization
- Automatic use of surface stresses of solids for fatigue responses

- Thermal Compliance
 - · Global measure similar to static compliance
 - Maximizes conduction
 - · Equivalent to minimum temperature

- Of a closed shell structure
- Applications include optimizing fluid containers like pressure tanks, fuel tanks and oil pans to contain a minimum volume

- Vector-based Input of Responses
 - Works with equation responses
 - No need to create separate, individual responses to reflect a 'vector'
 - E.g. Average element stress in a component with 1000 elements

- Resultant Force and Moment
 - Requires a section definition on which forces/moments are calculated
 - E.g. Determine the effect of the cylinder at the circular cross-section face

- Resultant Force and Moment
 - Example using section force to drive the vehicle frame design
 - Multiple load cases (torsion, bending, linearized roof and side crash)
 - Evaluate the influence of the A-pillar cross section forces for roof crush

• Resultant Force and Moment

- NVH Responses
 - Frequency range based response definition
 - Added benefit that allows sub-range based equations-of-responses definition
 - Response scaling: Log, A-, B- and C-weighting
 - Human ear is less sensitive at low and high frequencies
 - · Weighting is aimed at capturing that sensitivity
 - A-weighting is most popular
 - E.g. Noise at 100Hz would sound about 20dB quieter than at 1000Hz at the same sound pressure level

Image source: Wikipedia (A-weighting)

- NVH Responses
 - Octave Bands: Full, 1/3 and 1/8 octave bands

Frequency sub-range:1500-3500 Hz

- Automated Tape Laying (ATL) of Composites
 - Higher rates of material deposition
 - Unidirectional and fabric prepreg tapes can be deposited
 - Versatile process allowing breaks and changes in fiber orientation
 - Can be used for flat or curved structures
 - Applicable for large structures such as wing spars
 - Strip width and minimum length can be defined

Image source: CW/Sara Black

🛆 Altair

New Manufacturing Constraints

Automated Tape Laying (ATL) of Composites

0 Ply Thickness

• Automated Tape Laying (ATL) of Composites

- Components made from flexible rolling or Tailor rolled blanks
 - Continuous rolling process for sheet metals
 - · Varying thicknesses with smooth transitions
- Linear/planar pattern grouping
 - · Used with free size optimization

🛆 Altair

- Thickness Gradient Constraint for Shells
 - Similar to ply drop-off constraints for composites
 - Overall or directional gradient control can be applied
 - Can be combined with linear/planar pattern grouping to create other TRB-related constraints

Additively Manufactured Lattice Structures

Lightweight Good thermal behavior Porosity (for implants) Functional integration Parts count reduction Geometric complexity

Enabling Technology

🛆 Altair

Designing for Additive Manufacturing

- Simultaneous multi-scale optimization of macro and 'micro' structures
- Two-phase optimization process
 - Topology with porosity to drive material distribution

- Sizing optimization of lattice cell members
 - Including detailed constraints like stress and local buckling

3D Printed Hybrid Solid-Lattice Structure

Solution Enhancements

Nonlinear Analysis – Contact

- Finite sliding
- Buckling/Preloading analysis with S2S contact
- S2S contact visualization in HyperMesh

Nonlinear Analysis – Material

- Arruda-Boyce hyperelastic material
 - Good curve fitting with limited test data
 - Good for higher strains
 - Captures stiffening effects

- Sealing analysis of a packer used in the oil and gas industry
- The packer is squeezed by the moving piston against a fixed wall so as to create an annular seal between the two pipes
- · The contact status result-type indicates that the seal has been successfully created

Nonlinear Analysis – Elements and Loading

- 1D element support for large displacement analysis
 - CBAR, CBEAM and CROD

- Follower loads
 - Pressure and force are supported
 - Can be subcase dependent

- Time dependent loading input
 - Amplitude of loading is defined through tables
 - No need to create multiple subcases to represent loading/unloading sequences

NVH Analysis

- BIOT (Poro-Elastic) Material
 - Better solution quality and stability
 - No "weak" modes from BIOT material
 - Improved run times

- One-Step Transfer Path Analysis
 - More accurate enforced motion based input can be defined
 - Direct frequency response solution is supported
 - Output and visualization of entities outside the control volume for better diagnostics

NVH Analysis

- CMS with Preload
 - · Capture stiffening effects due to preloading
 - Pretension and contact in nonlinear analysis can be included
 - More accurate model representation

- Large Shape Changes in Optimization
 - Linear Statics
 - Normal Modes
 - Buckling
 - Nonlinear Statics
- Applications include optimization of rib/stiffener locations

- Multiple slopes for Dang Van FoS
 - Multi-axial fatigue criterion
 - · Used to predict if a component will fail in its entire load history
 - · Used where minimum cycles to failure is not applicable, e.g. propeller shafts

- Topology Result Discreteness
 - Normal Modes and Modal Frequency Response Solutions

- Topology Result Discreteness
 - No mass penalization under gravity and centrifugal loading
 - Accurate representation of body forces through the iteration history

- Topology Result Discreteness
 - New optimization parameter to enable result discreteness
 - · More discrete topology results for manufacturing constraints
 - Significant effect on non-discrete results with MAXDIM

Performance

NVH Analysis

- CMS Super Element Generation with AMSES
 - New, much faster formulation
 - Very effective for models with many (thousands) ASET degrees of freedom
 - Applies to:
 - NVH applications including material damping and acoustic interface matrices
 - Flexbody generation for MBD analysis
 - Works with Craig-Bampton method (CB and CBN)

CMS SE Generation with AMSES							
5M DOF Solid Model Number of Static Modes: 3318 Number of Dynamic Modes: 50	Original Formulation	New Formulation (OS 14.0)					
Run Time	41 Hours	70 Minutes					

© 2016 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Usability

Analysis

- Nonlinear Analysis Results
 - Output at load increments

• Output of contact area

SUBCASE	400	8 LOAI	201	Nonlinea	ar Load F	Factor: 9.	.134375E-01	LABEL:	NLSTAT
CONTACT	INTERFACE:	TOTAL FOR	E ACTING ON	N MASTER SUR	FACE (BA	ASIC SYSTEM)	AND TOTAL	CONTACT	AREA
CONTACT#	FORCE-X	K FORCH	-Y FORG	CE-Z MAG	NITUDE	AREA			
41	-2.3439E+	-02 -1.3370	E+02 5.120	07E-12 2.69	84E+02	1.4902E+00			
42	-5.6508E+	-02 -2.5674	E+02 2.975	6.20 6.20)67E+02	1.3910E+00			

- DRESP2/3 Response Output in H3D
 - Post-processing of user-defined responses
 - · Can be used for analysis also

- Free Shape Optimization Results
 - Grow or Shrink results type

Focus for 14 – Better Designs and Better Processes

