Computational Fluid Dynamics
with HyperWorks

Dmitry Fokin
Senior Application Specialist
March 2016

fokin@altair.de
AcuSolve – Better Technology, Better Solution

- Fluid-Structure Interaction
- Thermal Management
- Computational Aero-acoustics
- Non-Newtonian Flow Simulation
- Electronic Cooling
- Aerodynamics

Multiphysics Analysis and Optimization

- General purpose CFD solver
- Unique formulation based on Finite Element method
- Robustness & Accuracy
AcuSolve Features

- **Physics:**
 - Incompressible & weakly compressible Navier–Stokes
 - Thermal analysis
 - Conjugate heat transfer
 - Multi–layered thermal shell
 - Enclosure radiation – View factors
 - Solar radiation
 - Multi–species transport equations
 - Sliding Mesh (Rotary Machines)

- **Turbulence:**
 - Spalart–Allmaras RANS model; k–w, SST
 - Dynamic subgrid LES models
 - Hybrid RANS/LES (DES) model & (DDES)

- **Time Accurate Transient Simulation:**
 - Coupled with control systems
AcuSolve Overview

Flow solver

- CAD Package
 - Third Party Mesh Generator and/or Input File Writer
 - Pre-Processor
 - AcuConsole
 - Analysis
 - AcuSolve
 - Acoustic Analysis
 - CAA Output
 - Translators / Direct Readers
 - Third Party Post-Processor
 - Direct Coupling Fluid/Structure Interaction
 - Structural Solver
AcuSolve Overview

- **Markets using AcuSolve:**
 - Automotive
 - Train aerodynamics
 - Renewable Energy
 - Boat design
 - Electronic cooling
 - Chemical mixing
 - Home Appliances
 - Medical and medical equipment
 - Oil/Gas and offshore
 - Universities
 - National labs
 - Etc. . .
Flows in Rotating Machinery

- **Rotating reference frame**
 - Steady state simulation
 - Rotational body forces appear as source term in
 - No special user input on the interface (rotating, stationary)
 - Less CPU time than transient

- **Sliding mesh**
 - Transient simulation
 - Rotating and stationary mesh
 - Accurate but higher CPU time
Engine and Powertrain cooling *(components)*

- **Heat Exchanger Component**
 - Simplifies the device to a modeled pressure drop and heat source

- **Fan Component**
 - Simplifies the device to a modeled pressure rise and swirl
Thermal features

- Conjugated heat transfer
- Enclosed radiation
- Solar radiation
- Multi-layer thermal shell
 - e.g. electronic cooling, PCB (printed circuit board)
Thermal features

- Conjugated heat transfer
- Enclosed radiation
- Solar radiation
- Multi-layer thermal shell
- Convection

Transient thermal CFD analysis in car cabin
Scalar transport equations

• Species transport equation

\[\rho \frac{\partial \phi_i}{\partial t} + \rho u \cdot \nabla \phi_i = \nabla \cdot \Psi_i + \rho \sigma_i \]

• Solve up to 9 advective diffusive transport equations

• Useful for modeling multiple miscible fluids and concentrations

Air/methan mixing (premixer of gas turbine)
Sliding Mesh & Rigid Body Valve Motion

- No remeshing
- Sliding mesh
- Changing BC
- Mesh distortion
Fluid Structure Interaction (FSI)

- **Rigid Body Dynamics Coupling**
 - 6-DOF rigid body solver

- **Practical FSI (P-FSI)**
 - Modal analysis in structural code
 - N modes as input for AcuSolve
 - Structural displacement computed by AcuSolve
 - Limited to linear structural displacements

- **Directly Coupled FSI (DC-FSI)**
 - Two codes run in tandem
 - Data exchange managed by AcuSolve
 - No intervening middleware required
Fluid Structure Interaction (FSI)

- **AcuSolve/MotionSolve Coupling**
 - AcuSolve/MotionSolve communicate using AcuSolve’s code coupling interface
 - Wetted surfaces are “paired” with rigid bodies
 - Loads/displacements exchanged at run time
Fluid Structure Interaction (FSI)

- **AcuSolve/MotionSolve Coupling**
 - Rigid bodies only
 - No flex body support at the current time
 - Suitable for loosely coupled applications
 - AcuSolve’s Multi-Iterative Coupling (MIC) functional, but will be improved in MotionSolve V13.0.210
Fluid Structure Interaction (FSI)

- **AcuSolve/MotionSolve Coupling**

- **Full system dynamics**
 - Maneuvering+aero
 - Tank sloshing
 - Complex motions

- **Complex interactions**
 - Not possible with AcuSolve’s internal 6-DOF solver
HyperMesh 13.0 *(general)*

- **Geometry**
 - All major CAD systems supported *(Catia, ProE, …)*
 - Geometry creation / repair / cleanup

- **Meshing**
 - CFD specific surface & volume meshing
 - Advanced boundary layer generation *(squeeze & collapse)*
 - Mesh optimization
 - Fluid & solid meshing

- **Import/export**
 - All major CFD solver supported *(Fluent, CCM+, CFX, Exa, …)*
HyperMesh 13.0 (BL generation)

BL Propagation Controls
Imprint angle & max layer difference

Proximity Controls
BL control in narrow regions

Quality Controls
BL layer collapsing based on elem. criteria
HyperMesh 13.0 *(octree based mesher)*

- A faster tetra mesher
- Smooth element transition
- Good quality tetras due to smoothing
HyperMesh 13.0 (*wrapping*)

- Variable element size
- Automatic hole/gap patcher
- Maintain close proximity between pair (*e.g. wheel and fender*)
- One click solution

before
after
CFD Post–Processing: HyperView

HyperWorks Desktop

- HyperView and HyperGraph
- Visual Data Interactively
- Capture and Standardize Post–Processing Process
- Results in AcuSolve Format, H3D or EnSight file format
Features

- Contour plots
- Vector plots
- Cutting planes
- Stream lines
- Moving meshes
- Animations
CFD Analysis Workflow in HyperWorks

HyperMesh - AcuConsole
AcuSolve
HyperView

Geometry Cleanup
Meshing
Morphing
Simulation (Solver)
Visualization

Optimization & DOE

HyperStudy
HyperStudy

- DOE (Design of Experiment)
 - Parameter study, sensitivity analysis, dependencies
 - Approximation of response surface

- Optimization
 - Variation of the Design Variables (DV)
 - Min/Max the objective function
 - Satisfy restriction

- Robustness studies
 - IN: Stochastic distribution for the DV
 - OUT: Stochastic distribution of the system response
Morphing
Case Study #2: Optimization of an exhaust tube

Flow velocity

initial

optimized

\[\gamma: +12\% \]
\[\Delta p: -16\% \]
Virtual Wind Tunnel

- Virtual Wind Tunnel
 - Environment for external automotive CFD analyses
 - Reduces user input to minimum

- Strength
 - Automatic and fast tetra mesher
 - One environment (meshing, setup, cluster submission)
 - Automatic reporting
 - Easy access to high end technology
 - Transient and steady state

- CFD solver AcuSolve
 - Finite-Element based CFD solver
 - Accurate, robust and scalable

Remark: Cluster westmere Xeon processors, 2.53GHz
Virtual Wind Tunnel in One Minute
HyperWorks for CFD

Complete CFD workflow supported by HyperWorks

AcuSolve, next-gen CFD solver integrated in HyperWorks

Advanced FSI capabilities available in AcuSolve

One CAE platform for structural and CFD analysis
Thank You!